
Rapid Visual Search Over Aerial Images Using
CNN Fingerprinting

Noa Schwartz
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA
noaleetz@mit.edu

Sean Condon
Department of Physics

Massachusetts Institute of Technology
Cambridge, MA
scondon@mit.edu

Abstract—The availability of satellite and aerial imagery has
increased massively in recent years, and the analysis of this
type of data is invaluable for many modern tasks: optimizing
crop yield, predicting weather, monitoring infrastructure, etc. As
the total amount of aerial imagery data exceeds the petabyte
scale, it is necessary to have efficient methods to analyze and
compress this type of data. This paper presents one such method:
using convolutional neural networks to compress large datasets
of aerial images into low-dimensional fingerprints, which enables
rapid similarity search between a query image and the rest of
the dataset. The image data is first cut into small chunks of
256 x 256 pixels, then each is fed through a pretrained CNN
which produces a fingerprint of 512 information-dense features,
resulting in a data size reduction of 384x. Euclidean distance in
the 512-dimensional fingerprint feature space is interpreted as a
proxy for image similarity, enabling a user to reliably find all
images similar to a query image with speeds orders of magnitude
faster than searching through the original, uncompressed data.

I. INTRODUCTION

Content-Based Image Retrieval (CBIR) describes the pro-
cess of retrieving images from a significantly large database of
candidate images. The term “Content-Based” specifies that the
contents of the queried image, where contents refers to shape,
texture, color, and spatial layout, is used to search and present
similar digital images. The similarity between the query image
and the database images is determined by ranking the database
images in order of a computed similarity score.

In CBIR, such low-level features are extracted from the
query and are used to compare the visual similarity. One of the
central features of CBIR is feature extraction- for each image
query, a new, unique set of features is used to compare images
(features are learned automatically from the data) [9]. This is
particularly valuable in databases of digital images, where we
need to transform the data to a lower-dimensional space while
retaining meaningful properties from the original data. One
possible way to address feature extraction is through the use
of a CNN to compress the original images into a more space-
efficient form of data, as we will discuss over the course of
this paper. The new form of data is what is used to perform
similarity comparisons.

Using learning-based rather than hand-engineered feature
generation is a shift specific to the 2011-2020 time frame,
due to the emergence of deep learning. Beginning in 2011,
Krizhevsky and Hinton used a deep autoencoder to use short

Fig. 1: A high-resolution aerial image from our dataset. This
specific image is 12000 x 14000 pixels with a resolution of
about 10 cm per pixel, so it will be processed into 2500 tiles
of 256 x 256 pixels each. Each tile will then be compressed
into a information-dense fingerprint for similarity search.

binary codes to represent the database images. A year later,
Kang et al. introduced deep multi-view hashing to capture mul-
tiple views of data by using view-specific and shared hidden
nodes to model the layers. In 2014, Babenko et al. formalized
the use of activation functions on the top layers of CNNs to
serve as the neural codes for the image retrieval application.
The neural codes were further compressed with PCA. In 2015,
Lai et al. used a combination of convolution layers and hash
bits, where the layers formed the intermediate image features
serving as the inputs to the hashing algorithm [6]. Throughout
the last decade, it is clear that the deep learning models applied
to image retrieval have evolved tremendously. Researchers
have explored a variety of network types, including CNNs,
Autoencoders, GANs, in the context of both supervised and
unsupervised models [8]. Throughout the course of this paper,
we will discuss the implementation of a CNN to transform
tiled images into arrays of size 512. As research progresses,
the goal will continue to be to master the tradeof between



reduction in representation size and the meaningfulness of the
extracted data.

II. MOTIVATION

CBIR has developed into a search problem of interest be-
cause search via querying metadata, such as tags, keywords, or
descriptions have a dependence on manual human annotation.
This dependence is limiting to image retrieval applications
because (1) accuracy of the model is bounded by the quality of
human annotation and (2) it is not scalable for large databases.
The explosion in database size can be attributed largely to re-
cent technological development (improved smartphone camera
quality, the ease of sharing images and videos on the Internet)
resulting in widespread use of shared and stored multimedia
data.

Some images databases are created through automatic image
generation, such as surveillance cameras- such a use case is
also not scalable using human annotation. Another difficulty
that metadata based image retrieval presents is the added man-
ual curation needed to prevent annotated data from being mis-
categorized when categories include overlapping subclasses.
For example, “mint” can be in a superclass “plant” or “ice
cream”, requiring more advanced semantic understanding by
a labeler to use the remaining contents in the image in order
to perform a correct annotation. As systems with large digital
image databases become more common in a wide variety of
domains, including scientific, medical, advertising/marketing,
and consumer products the need for efficiently storing images
so that they can be identified has become top of mind [2].

III. APPROACH

A. Aerial Image Data Set

The dataset we used as our digital image database (ob-
tained from the DroneDeploy Aerial Segmentation Benchmark
Challenge) contains aerial orthomosaics captured by drones
belonging to 6 different classes: Ground, Water, Vegetation,
Cars, Clutter, and Building [5]. The image resolution is
approximately 10cm per pixel, providing a great level of detail
with which to perform image extraction. The images are stored
as RGB TIFFS. In total, the original dataset, prior to any
preprocessing required for feature extraction is 10GB.

B. Tiling

The .TIF images described in section III-A are processed
into tiles of 256 x 256 pixels. This size was chosen so that
objects in the images (such as cars, machinery, trees, etc.) are
clearly visible, but each tile does not typically contain many
different objects.

The tiling is accomplished by sliding a 256 x 256 window
over each .TIF image with a stride of 128 pixels. Using a stride
length of half the window size ensures that most small motifs
will be well-centered in at least one tile. Image dimensions are
cropped to be evenly divisible by the window length so that
no padding is needed. Additionally, because most of the .TIF
images have non-rectangular borders, some tiles will contain

Fig. 2: 25 tiles randomly selected from the 45,000 total tiles.
Each is 256 x 256 RGB pixels and is created using the
workflow described in section III-B

.

majority black pixels. For this reason, tiles that have > 50%
black pixels are discarded.

The resulting 256 x 256 RGB images are saved as 3-
dimensional matrices by the NumPy computational package
for Python so that they can be easily read into the neural
network for fingerprinting. After discarding the majority black
tiles, the total size of the data at the current step is 9
GB. However, the 8-bit integer pixel values will need to
be converted to 32-bit floating decimal point values for the
fingerprinting step (described more in section III-C1), so the
actual size at this step is closer to 70 GB.

Figure 2 shows a batch of these tiles.

C. CNN-Generated Fingerprints

During fingerprinting, the tiles that were created in section
III-B are fed through a convolutional neural network to extract
a low-dimensional feature vector for each. The tiles are first
pre-processed so that pixel value distributions are optimal
for the CNN, and then feature vectors are inferred using a
pretrained neural network.

1) Pre-Processing: In order for optimal inference by the
pretained neural network, pixel values for tiles must have
certain distributions. First, tile dimensions are arranged in the
format C xH xW , where C is the channel (3 for our RGB
images), and H and W for image height and width (both 256).
Pixel values in these dimensions are standardized to the means
and standard deviations in table I.



Fig. 3: Resnet-18 convolutional neural network architecture.
The pretained weights of this network optimized for Ima-
geNet classification are used to generate fingerprints, which
come from the penultimate 1 x 1 x 512 dimensional layer
average pool. Figure courtesy of [10].

Dimension Mean Standard Deviation

C 0.485 0.229

H 0.456 0.224

W 0.406 0.225

TABLE I: Standardizations for 3-dimensional image tiles (C
= channel, H = height, W = width)

PyTorch’s torchvision library comes with a transform func-
tionality for this purpose. The normalize transform is used.

2) Model: Fingerprints are generated using the ResNet-
18 architecture, a deep convolutional neural network [7].
The structure of this network is shown in figure 3. In this
project, we use the weights of ResNet-18 optimized for image
classification on the ImageNet dataset, with 1000 different
classes of images such as tiger shark, coffee cup, rugby ball,
etc [4]. It is worth noting that the weights of the network are
not optimized for classification of satellite and aerial images,
yet they still perform well on the aerial image data.

The final network of the ResNet-18 network is a 1000
neuron fully-connected layer with softmax activation, meant
to classify the input into one of the 1000 possible classes
of ImageNet. Because we want to generalize the network to
perform well on our aerial data, we remove this final layer
and use the second to last layer, 1 x 512 dimension average
pooling layer, to generate the fingerprints for each input tile.
The rationale of this decision is two-fold: the 512 dimensions
of the penultimate layer offer more compression than the
1000 dimensions of the final layer, and the penultimate layer
theoretically contains the most high-level information of the
input image without being specialized for a class of image
(like tiger shark or coffee cup) that is not relevant to aerial

imagery.
Each of the 45,000 tiles in our aerial imagery dataset

is fed through the pretrained ResNet-18 model, and a 512-
dimensional fingerprint is taken from the activation of the
penultimate layer. These are stored in a hash-table, where the
fingerprint of a tile is the value, and a unique identifier (UID)
for the original image is the key [10].

D. Nearest K Fingerprints

In the previous section, we demonstrated how our original
aerial dataset is transformed into a hash-map mapping tile
UID to the corresponding 512-dimensional fingerprint. Now,
we move to discuss how similar vectors are retrieved.

1) Distance: Given two fingerprints, we would like to
calculate the distance between them. This distance is inversely
proportional to the similarity score between the two vectors.
There are plenty of ongoing research discussions which evalu-
ate the effectiveness of several similarity metrics in the context
of content-based image retrieval. Some also explore how
specific use cases of CBIR might require different similarity
metrics. For example, Cho et al. compared four common
similarity measures, including linear discriminant analysis
(LDA), Bayesian neural network (BNN), cosine similarity
measure (Cos), and Euclidean distance (ED), to determine
which performs better when characterizing breast masses on
ultrasound images [3].

Euclidean distance (ED) is most commonly used for mea-
suring the distance between two feature vectors, and is what
we will use to determine whether two fingerprints are similar.
It performs particularly well in cases where the feature vector
elements are of equal importance.

ED is calculated by taking the square root of the sum of
squares of the differences between the vector components.
Given two tile fingerprints a = (x1, x2, ..., x512) and b =
(y1, y2, ..., y512), the ED is as follows [1]:

ED(a, b) =

√√√√ n∑
i=1

(xi − yi)2

.
2) Search: Now, we need a mechanism to find the k-nearest

fingerprints. To do this, we perform the distance calculation
between the query tile’s fingerprint and the fingerprint of all
other tiles in the hash-map. This brute-force calculation will
yield a list sorted by Euclidean Distance of the candidate tiles
relative to the query tile, and the nearest-k (those with the
smallest ED) will be returned to the user.

E. Interface

The search flow will look as follows:
• A query tile image and k-value (the number of similar

tiles to retrieve) are selected
• A fingerprint is generated for the queried tile
• A brute-force distance calculation is done between this

fingerprint and the fingerprints of the database images
• The nearest-k tiles are presented (Fig. 4)



Fig. 4: Query Result for a Single Queried Tile with k=10

IV. RESULTS

1) Data compression: Recall from section III-B that the
original tiles are 256 x 256 x 3 = 200,000 values (originally
8-bit integers converted into 32-bit floats), and the fingerprints
for each tile are 512 values (also 32-bit floats). This gives a
theoretical maximum data compression rate of:

η =
256 ∗ 256 ∗ 3

512
= 384

when comparing the fingerprints to the tiles after both are
converted to 32-bit floats. And a maximum compression rate
of:

η0 =
256 ∗ 256 ∗ 3

512
∗ 8

32
= 96

when comparing the original 8-bit integer tiles to the 32-bit
float fingerprint vectors.

This means that any computational algorithm to compare
visually similarity can work 384x faster when operating in
the 512-dimensional fingerprint space versus the 200,000-
dimensional tile space. In actuality, these fingerprints have
to be stored in a hash table that keeps unique identifiers
(UIDs) for the original tiles as keys mapped to the 512-value
fingerprints as values. So the actual data compression rate
depends greatly on the size of the UIDs.

We used a standard Python dictionary for this hash table,
which had a total size of 400 MB. Compared to the original
8-bit integer tile dataset (of total size 9.14 GB), we achieve a
data compression of 23x; compared to the pre-processed 32-
bit float tile dataset (of total size 70 GB), we achieve a data
compression of 175x.

2) Search: Assuming a model of computation where arith-
metic calculations, including the Euclidean Distance between
two fingerprints, can be done in O(1) time, the time to
calculate the distance between the query fingerprint and each
candidate fingerprint is constant. Given Ntiles, to do this
for the entire hash-map of candidate fingerprints, we re-
quire O(Ntiles) time. By maintaining a list of the smallest-
k distances seen and the UID of the respective candidate,
as we walk through the hash-map containing the candidate
fingerprints, a comparison can be performed in constant time
after each new distance calculation to see if the new distance
is in the smallest-k. In total, maintaining this list requires
k ∗ Ntiles, which can be bounded by O(Ntiles). The time
complexity to perform search for the nearest-k tiles is linear
in the number of tiles.

Table II summarizes the actual results of the search time
required to retrieve the UIDs of the nearest-k tiles to the query
for several values of k.

TABLE II: Results for Search Time

k Mean (sec) Standard Deviation (sec)

10 3.24 0.20

5 3.28 0.15

2 3.05 0.17

As the table presents, as k increases there is no significant
change in the time required to complete search.

3) Visual Similarity: The high rates of data compression
and search speeds are only impressive if the algorithm is
able to return images that look visually similar to a query
image. We noticed that the fingerprints generated by ResNet-
18 contain a remarkable amount of visual information from
the tiles, and a high degree of visual similarity is obtained
between any query image and the discovered k most similar
images.

Please see Fig. 5 for some example queries for k = 10. Note
that these examples come from randomly selected queries out
of the 45,000 possible tiles. About 15 queries were made, and
7 were selected that had large diversity in color and motif, but
all queries returned 10 visually similar images.

V. CONCLUSION

In this paper, we demonstrated that using pretrained con-
volutional neural networks to generate information-dense fin-
gerprints for a large dataset of aerial images is a great way to
speed up computation when doing a visual similarity search.
This procedure produced a data compression rate of 175x,
allowing a user on a personal computer to search for visually
similar images to a query in a 70 GB dataset in a matter
of a few seconds. And this computational speed and data
compression does not make obvious compromises on the
quality of image similarity.

Image similarity search is important for a variety of aerial
image-based tasks, such as optimizing crop yield, managing
infrastructure via satellite, predicting weather, etc. And as
the total amount of satellite and aerial imagery grows in the
coming years, it will become even more necessary to have
ways to meaningfully compress this data - such as the method
presented in this paper - so that it can be easily used for these
tasks.

REFERENCES

[1] Mutasem K. Alsmadi. “An efficient similarity measure
for content based image retrieval using memetic al-
gorithm”. In: Egyptian Journal of Basic and Applied
Sciences 4.2 (June 2017), pp. 112–122. ISSN: 2314-
808X. URL: https : / /www.sciencedirect . com/science /
article/pii/S2314808X16300628.

[2] A. Berman and L. Shapiro. “A Flexible Image Database
System for Content-Based Retrieval”. In: Comput. Vis.
Image Underst. 75 (1999), pp. 175–195.



Fig. 5: Example of a query result where k = 10, returning the ten most similar images to the query images shown in the left
most column. The visual similarity search was run on a few random queries chosen from all 45000 tiles, and some of these
queries are shown in this figure, chosen to present a variety of colors and motifs.

[3] Hyun-Chong Cho et al. “Similarity evaluation in a
content-based image retrieval (CBIR) CADx system
for characterization of breast masses on ultrasound
images”. eng. In: Medical physics 38.4 (Apr. 2011).
PMC3069991[pmcid], pp. 1820–1831. ISSN: 0094-
2405. DOI: 10.1118/1.3560877. URL: https://doi.org/10.
1118/1.3560877.

[4] Jia Deng et al. “ImageNet: A large-scale hierarchical
image database”. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition. 2009, pp. 248–
255. DOI: 10.1109/CVPR.2009.5206848.

[5] DroneDeploy Machine Learning Segmentation Bench-
mark. URL: https : / / github. com / dronedeploy / dd - ml -
segmentation-benchmark.

[6] S. Dubey. “A Decade Survey of Content Based
Image Retrieval using Deep Learning”. In: ArXiv
abs/2012.00641 (2020).

[7] Kaiming He et al. “Deep Residual Learning for Image
Recognition”. In: CoRR abs/1512.03385 (2015). arXiv:
1512.03385. URL: http://arxiv.org/abs/1512.03385.

[8] Ryan Keisler et al. “Visual search over billions of aerial
and satellite images”. In: Computer Vision and Image
Understanding 187 (2019), p. 102790. ISSN: 1077-
3142. DOI: https://doi.org/10.1016/j.cviu.2019.07.010.
URL: https://www.sciencedirect.com/science/article/pii/
S1077314219301067.

[9] Afshan Latif et al. “Content-Based Image Retrieval
and Feature Extraction: A Comprehensive Review”.
In: Mathematical Problems in Engineering 2019 (Aug.
2019), p. 9658350. ISSN: 1024-123X. DOI: 10 .1155/
2019 /9658350. URL: https : / / doi . org /10 .1155 /2019 /
9658350.

[10] Paolo Napoletano, Flavio Piccoli, and Raimondo Schet-
tini. “Anomaly Detection in Nanofibrous Materials by
CNN-Based Self-Similarity”. eng. In: Sensors (Basel,
Switzerland) 18.1 (Jan. 2018). s18010209[PII], p. 209.
ISSN: 1424-8220. DOI: 10.3390/s18010209. URL: https:
//doi.org/10.3390/s18010209.


